

ChemSpiPy

ChemSpiPy provides a way to interact with ChemSpider in Python. It allows chemical searches, chemical file
downloads, depiction and retrieval of chemical properties. Here’s a quick peek:

>>> from chemspipy import ChemSpider
>>> cs = ChemSpider('<YOUR-SECURITY-TOKEN>')
>>> c1 = cs.get_compound(236) # Specify compound by ChemSpider ID
>>> c2 = cs.search('benzene') # Search using name, SMILES, InChI, InChIKey, etc.

Features

	Search compounds by synonym, SMILES, InChI, InChIKey, formula and mass.

	Get identifiers and calculated properties for any compound record in ChemSpider.

	Download compound records as a MOL file with 2D or 3D coordinates.

	Get a 2D compound depiction as a PNG image.

	Retrieve all available spectral information for a specific compound.

	Complete interface to every endpoint of the ChemSpider Web APIs.

	Supports Python versions 2.7 – 3.4.

User guide

A step-by-step guide to getting started with ChemSpiPy.

	Introduction
	Obtaining a security token

	ChemSpiPy license

	Installation
	Option 1: Use pip (recommended)

	Option 2: Download the latest release

	Option 3: Clone the repository

	Getting started
	Before we start

	First steps

	Retrieve a Compound

	Search for a name

	Compound
	Creating a Compound

	Searching for Compounds

	Compound properties

	Implementation details

	Searching
	Compound search

	Asynchronous searching

	Simple search

	Search by formula

	Search by mass

	Spectra
	Retrieving spectra

	Spectrum metadata

	Spectrum data

	Miscellaneous
	Constructing API URLs

	Data sources

	Advanced
	Keep your security token secret

	Specify a User Agent

	Logging

	Contributing
	Feedback

	Contributing

API documentation

Comprehensive API documentation with information on every function, class and method.

	API documentation
	chemspipy.api

	chemspipy.objects

	chemspipy.search

	chemspipy.errors

Introduction

ChemSpiPy is a Python wrapper that allows simple access to the web APIs offered by ChemSpider. The aim is to provide an
interface for users to access and query the ChemSpider database using Python, facilitating programs that can
automatically carry out the tasks that you might otherwise perform manually via the ChemSpider website [http://www.chemspider.com].

The ChemSpider website has full documentation for the ChemSpider APIs [http://www.chemspider.com/AboutServices.aspx]. It can be useful to browse through this
documentation before getting started with ChemSpiPy to get an idea of what sort of features are available.

Obtaining a security token

Access to the ChemSpider API is free to academic users. Commercial users should contact the ChemSpider team to obtain
access.

Most operations require a “security token” that is issued to you automatically when you register for a RSC ID [https://www.rsc.org/rsc-id/sign-in] and
then sign in to ChemSpider. Once you have done this, you can find your security token on your
ChemSpider User Profile [http://www.chemspider.com/UserProfile.aspx].

Some operations require a further “Service Subscriber” role. Contact the ChemSpider team to discuss upgrading your user
account for access to these features.

Warning

Make sure you copy the entire token from the Chemspider profile page. The text field is quite narrow so you may have
to drag across to the right to select the entire token. The token format should be
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

ChemSpiPy license

The MIT License

Copyright (c) 2013 Matt Swain <m.swain@me.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Installation

ChemSpiPy supports Python versions 2.7, 3.2, 3.3 and 3.4.

There are two required dependencies: six [http://pythonhosted.org/six/] and requests [http://docs.python-requests.org/].

Option 1: Use pip (recommended)

The easiest and recommended way to install is using pip:

pip install chemspipy

This will download the latest version of ChemSpiPy, and place it in your site-packages folder so it is automatically
available to all your python scripts. It should also ensure that the dependencies six [http://pythonhosted.org/six/] and requests [http://docs.python-requests.org/] are installed.

If you don’t already have pip installed, you can install it using get-pip.py [http://www.pip-installer.org/en/latest/installing.html]:

curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
python get-pip.py

Option 2: Download the latest release

Alternatively, download the latest release [https://github.com/mcs07/ChemSpiPy/releases/] manually and install yourself:

tar -xzvf ChemSpiPy-1.0.5.tar.gz
cd ChemSpiPy-1.0.5
python setup.py install

The setup.py command will install ChemSpiPy in your site-packages folder so it is automatically available to all your
python scripts.

Option 3: Clone the repository

The latest development version of ChemSpiPy is always available on GitHub [https://github.com/mcs07/ChemSpiPy]. This version is not guaranteed to be
stable, but may include new features that have not yet been released. Simply clone the repository and install as usual:

git clone https://github.com/mcs07/ChemSpiPy.git
cd ChemSpiPy
python setup.py install

Getting started

This page gives a introduction on how to get started with ChemSpiPy.

Before we start

	Make sure you have installed ChemSpiPy.

	Obtain a security token from the ChemSpider web site.

First steps

Start by importing ChemSpider:

>>> from chemspipy import ChemSpider

Then connect to ChemSpider by creating a ChemSpider instance using your security token:

>>> cs = ChemSpider('<YOUR-SECURITY-TOKEN>')

All your interaction with the ChemSpider database should now happen through this ChemSpider object, cs.

Retrieve a Compound

Retrieving information about a specific Compound in the ChemSpider database is simple.

Let’s get the Compound with ChemSpider ID 2157 [http://www.chemspider.com/Chemical-Structure.2157.html]:

>>> c = cs.get_compound(2157)

Now we have a Compound object called c. We can get various identifiers and calculated
properties from this object:

>>> print(c.molecular_formula)
C_{9}H_{8}O_{4}
>>> print(c.molecular_weight)
180.15742
>>> print(c.smiles)
CC(=O)OC1=CC=CC=C1C(=O)O
>>> print(c.common_name)
Aspirin

Search for a name

What if you don’t know the ChemSpider ID of the Compound you want? Instead use the search method:

>>> for result in cs.search('Glucose'):
... print(result)
Compound(5589)
Compound(58238)
Compound(71358)
Compound(96749)
Compound(9312824)
Compound(9484839)

The search method accepts any identifer that ChemSpider can interpret, including names, registry numbers, SMILES
and InChI.

That’s a quick taster of the basic ChemSpiPy functionality. Read on for more some more advanced usage examples.

Compound

Many ChemSpiPy search methods return Compound objects, which provide more functionality that a
simple list of ChemSpider IDs. The primary benefit is allowing easy access to further compound properties after
performing a search.

Creating a Compound

The easiest way to create a Compound for a given ChemSpider ID is to use the get_compound
method:

>>> compound = cs.get_compound(2157)

Alternatively, a Compound can be instantiated directly:

>>> compound = Compound(cs, 2157)

Either way, no requests are made to the ChemSpider servers until specific Compound properties are
requested:

>>> print(compound.molecular_formula)
C_{9}H_{8}O_{4}
>>> print(compound.molecular_weight)
180.15742
>>> print(compound.smiles)
CC(=O)OC1=CC=CC=C1C(=O)O
>>> print(compound.common_name)
Aspirin

Properties are cached locally after the first time they are retrieved, speeding up subsequent access and reducing the
number of unnecessary requests to the ChemSpider servers.

Searching for Compounds

See the searching documentation for full details.

Compound properties

	csid: ChemSpider ID.

	image_url: URL of a PNG image of the 2D chemical structure.

	molecular_formula: Molecular formula.

	smiles: SMILES string.

	stdinchi: Standard InChI string.

	stdinchikey: Standard InChIKey.

	inchi: InChI string.

	inchikey: InChIKey.

	average_mass: Average mass.

	molecular_weight: Molecular weight.

	monoisotopic_mass: Monoisotopic mass.

	nominal_mass: Nominal mass.

	alogp: AlogP.

	xlogp: XlogP.

	common_name: Common Name.

	mol_2d: MOL file containing 2D coordinates.

	mol_3d: MOL file containing 3D coordinates.

	mol_raw: Unprocessed MOL file.

	image: 2D depiction as binary data in PNG format.

	spectra: List of spectra.

Implementation details

Each Compound object is a simple wrapper around a ChemSpider ID. Behind the scenes, the property
methods use the get_compound_info, get_extended_compound_info, get_record_mol and
get_compound_thumbnail API methods to retrieve the relevant information. It is possible to use these API methods
directly if required:

>>> info = cs.get_extended_compound_info(2157)
{u'smiles': u'CC(=O)Oc1ccccc1C(=O)O', u'common_name': u'Aspirin', u'nominal_mass': 180.0, u'molecular_formula': u'C_{9}H_{8}O_{4}', u'inchikey': u'BSYNRYMUTXBXSQ-UHFFFAOYAW', u'molecular_weight': 180.1574, u'inchi': u'InChI=1/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)', u'average_mass': 180.1574, u'csid': 2157, u'alogp': 0.0, u'xlogp': 0.0, u'monoisotopic_mass': 180.042252}

Results are returned as a python dictionary that is derived directly from the ChemSpider API XML response.

Searching

ChemSpiPy provides a number of different ways to search ChemSpider.

Compound search

The main ChemSpiPy search method functions in a similar way to the main search box on the ChemSpider website. Just
provide any type of query, and ChemSpider will interpret it and provide the most relevant results:

>>> cs.search('O=C(OCC)C')
Results([Compound(8525)])
>>> cs.search('glucose')
Results([Compound(5589), Compound(58238), Compound(71358), Compound(96749), Compound(9312824), Compound(9484839)])
>>> cs.search('2157')
Results([Compound(2157)])

The supported query types include systematic names, synonyms, trade names, registry numbers, molecular formula, SMILES,
InChI and InChIKey.

The Results object that is returned can be treated just like any regular python list. For example,
you can iterate over the results:

>>> for result in cs.search('Glucose'):
... print(result.csid)
5589
58238
71358
96749
9312824
9484839

The Results object also provides the time take to perform the search, and a message that explains
how the query type was resolved:

>>> r = cs.search('Glucose')
>>> print(r.duration)
u'0:00:00.017'
>>> print(r.message)
u'Found by approved synonym'

Asynchronous searching

Certain types of search can sometimes take slightly longer, which can be inconvenient if the search method blocks the
Python interpreter until the search results are returned. Fortunately, the ChemSpiPy search method works asynchronously.

Once a search is executed, ChemSpiPy immediately returns the Results object, which is actually
empty at first:

>>> results = cs.search('O=C(OCC)C')
>>> print(results.ready())
False

In a background thread, ChemSpiPy is making the search request and waiting for the response. But in the meantime, it is
possible to continue performing other tasks in the main Python interpreter process. Call ready() at any
point to check if the results have been returned and are available.

Any attempt to access the results will just block until the results are ready, like a simple synchronous search. To
manually block the main thread until the results are ready, use the wait() method:

>>> results.wait()
>>> results.ready()
True

For more detailed information about the status of a search, use the status property:

>>> results.status
u'Created'
>>> results.wait()
>>> results.status
u'ResultReady'

The possible statuses are Unknown, Created, Scheduled, Processing, Suspended,
PartialResultReady, ResultReady.

Simple search

The asynchronous search is designed to be simple as possible, but it’s possible that the additional overhead might be
overkill in some cases. The simple_search method provides a simpler synchronous alternative. Use it in the same way:

>>> cs.simple_search('Glucose')
[Compound(5589), Compound(58238), Compound(71358), Compound(96749), Compound(9312824), Compound(9484839)]

In this case, the main Python thread will be blocked until the search results are returned, and the results actually are
just in a regular Python list. A maximum of 100 results are returned.

Search by formula

Searching by molecular formula is supported by the main search method, but there is the possibility that a formula
could be interpreted as a name or SMILES or another query type. To specifically search by formula, use:

>>> cs.search_by_formula('C44H30N4Zn')
[Compound(436642), Compound(3232330), Compound(24746832), Compound(26995124)]

Search by mass

It is also possible to search ChemSpider by mass by specifying a certain range:

>>> cs.search_by_mass(680, 0.001)
[Compound(8298180), Compound(12931939), Compound(12931969), Compound(21182158)]

The first parameter specifies the desired molecular mass, while the second parameter specifies the allowed ± range of
values.

Spectra

Many compound records in ChemSpider have spectra associated with them.

Retrieving spectra

If there are spectra available for a Compound, you can retrieve them using the spectra
property:

>>> compound = cs.get_compound(2157)
>>> print(compound.spectra)
[Spectrum(2303), Spectrum(2304), Spectrum(3558), Spectrum(6639), Spectrum(6640), Spectrum(6641), Spectrum(6642), Spectrum(6643), Spectrum(6644), Spectrum(6645), Spectrum(8553), Spectrum(8554)]

Alternatively, you can get spectra directly by using either the compound ChemSpider ID or the Spectrum ID:

>>> cs.get_spectrum(362)
Spectrum(362)
>>> cs.get_compound_spectra(71358)
[Spectrum(360), Spectrum(361), Spectrum(3172)]

Spectrum metadata

Each Spectrum object has a number of properties:

>>> spectrum = cs.get_spectrum(3558)
>>> print(spectrum.spectrum_id)
3558
>>> print(spectrum.csid)
2157
>>> print(spectrum.spectrum_type)
HNMR
>>> print(spectrum.file_name)
Spectrum_315.jdx
>>> print(spectrum.comments)
collected by David Bulger at Oral Roberts University on a JEOL 300 MHz NMR with methanol as the solvent
>>> print(spectrum.original_url)
http://onschallenge.wikispaces.com/Exp072
>>> print(spectrum.url)
http://www.chemspider.com/FilesHandler.ashx?type=blob&disp=1&id=3558

Spectrum data

The data file for each spectrum is also available using the data property:

>>> spectra = cs.get_compound_spectra(2424)
>>> caffeine_ir = spectra[8]
>>> print(caffeine_ir.data)

Typically this is in JCAMP-DX format.

Miscellaneous

Constructing API URLs

See the ChemSpider API documentation [http://www.chemspider.com/AboutServices.aspx] for more details.

>>> cs.construct_api_url('MassSpec', 'GetExtendedCompoundInfo', csid='2157')
u'http://www.chemspider.com/MassSpec.asmx/GetExtendedCompoundInfo?csid=2157'

Data sources

Get a list of data sources in ChemSpider:

>>> cs.get_databases()
['Abacipharm', 'Abblis Chemicals', 'Abcam', 'ABI Chemicals', 'Abmole Bioscience', 'ACB Blocks', 'Accela ChemBio', ...]

Advanced

Keep your security token secret

Be careful not to include your security token when sharing code. A simple way to ensure this doesn’t happen by accident
is to store your security token as an environment variable that can be specified in your .bash_profile or .zshrc
file:

export CHEMSPIDER_SECURITY_TOKEN=<YOUR-SECURITY-TOKEN>

This can then be retrieved in your scripts using os.environ:

>>> CST = os.environ['CHEMSPIDER_SECURITY_TOKEN']
>>> cs = ChemSpider(security_token=CST)

Specify a User Agent

As well as using your security token, it is possible to identify your program to the ChemSpider servers using a User
Agent string.

You can specify a custom User Agent through ChemSpiPy through the optional user_agent parameter to the ChemSpider
class:

>>> from chemspipy import ChemSpider
>>> cs = ChemSpider('<YOUR-SECURITY-TOKEN>', user_agent='My program 1.3, ChemSpiPy 1.0.5, Python 2.7')

Logging

ChemSpiPy can generate logging statements if required. Just set the desired logging level:

import logging
logging.basicConfig(level=logging.DEBUG)

The logger is named ‘chemspipy’. There is more information on logging in the Python logging documentation [http://docs.python.org/2/howto/logging.html].

Contributing

Contributions of any kind are greatly appreciated!

Feedback

The Issue Tracker [https://github.com/mcs07/ChemSpiPy/issues] is the best place to post any feature ideas, requests and bug reports.

Contributing

If you are able to contribute changes yourself, just fork the source code [https://github.com/mcs07/ChemSpiPy] on GitHub, make changes and file a pull
request. All contributions are welcome, no matter how big or small.

Quick guide to contributing

	Fork the ChemSpiPy repository on GitHub [https://github.com/mcs07/ChemSpiPy/fork], then clone your fork to your local machine:

git clone https://github.com/<username>/ChemSpiPy.git

	Install the development requirements:

cd chemspipy
pip install -r requirements/dev.txt

	Create a new branch for your changes:

git checkout -b <name-for-changes>

	Make your changes or additions. Ideally add some tests and ensure they pass by running:

pytest

The final line of the output should be OK.

	Commit your changes and push to your fork on GitHub:

git add .
git commit -m "<description-of-changes>"
git push origin <name-for-changes>

	Submit a pull request [https://github.com/mcs07/ChemSpiPy/compare/].

Tips

	Follow the PEP8 [https://www.python.org/dev/peps/pep-0008] style guide.

	Include docstrings as described in PEP257 [https://www.python.org/dev/peps/pep-0257].

	Try and include tests that cover your changes.

	Try to write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Consider squashing your commits [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] with rebase.

	Read the GitHub help page on Using pull requests [https://help.github.com/articles/using-pull-requests].

API documentation

This part of the documentation is automatically generated from the ChemSpiPy source code and comments.

chemspipy.api

Core API for interacting with ChemSpider web services.

	
class chemspipy.ChemSpider

	Provides access to the ChemSpider API.

Usage:

>>> from chemspipy import ChemSpider
>>> cs = ChemSpider('<YOUR-SECURITY-TOKEN>')

	Parameters

	
	security_token (string) – (Optional) Your ChemSpider security token.

	user_agent (string) – (Optional) Identify your application to ChemSpider servers.

	api_url (string) – (Optional) Alternative API server.

	
get_compound(csid)

	Return a Compound object for a given ChemSpider ID. Security token is required.

	Parameters

	csid (string|int) – ChemSpider ID.

	Returns

	The Compound with the specified ChemSpider ID.

	Return type

	Compound

	
get_compounds(csids)

	Return a list of Compound objects, given a list ChemSpider IDs. Security token is required.

	Parameters

	csids (list [https://docs.python.org/3/library/stdtypes.html#list][string|int]) – List of ChemSpider IDs.

	Returns

	List of Compounds with the specified ChemSpider IDs.

	Return type

	list[Compound]

	
get_spectrum(spectrum_id)

	Return a Spectrum object for a given spectrum ID. Subscriber role security token is required.

	Parameters

	spectrum_id (string|int) – Spectrum ID.

	Returns

	The Spectrum with the specified spectrum ID.

	Return type

	Spectrum

	
get_spectra(spectrum_ids)

	Return a Spectrum object for a given spectrum ID. Subscriber role security token is required.

	Parameters

	spectrum_ids (list [https://docs.python.org/3/library/stdtypes.html#list][string|int]) – List of spectrum IDs.

	Returns

	List of spectra with the specified spectrum IDs.

	Return type

	list[Spectrum]

	
get_compound_spectra(csid)

	Return Spectrum objects for all the spectra associated with a ChemSpider ID.

	Parameters

	csid – string|int csid: ChemSpider ID.

	Returns

	List of spectra for the specified ChemSpider ID.

	Return type

	list[Spectrum]

	
get_all_spectra()

	Return a full list of Spectrum objects for all spectra in ChemSpider.

Subscriber role security token is required.

	Returns

	Full list of spectra in ChemSpider.

	Return type

	list[Spectrum]

	
search(query, order=None, direction=ASCENDING, raise_errors=False)

	Search ChemSpider for the specified query and return the results. Security token is required.

	Parameters

	
	query (string|int) – Search query.

	order (string) – (Optional) CSID, MASS_DEFECT,
MOLECULAR_WEIGHT, REFERENCE_COUNT,
DATASOURCE_COUNT, PUBMED_COUNT or
RSC_COUNT.

	direction (string) – (Optional) ASCENDING or DESCENDING.

	raise_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, raise exceptions. If False, store on Results exception property.

	Returns

	Search Results list.

	Return type

	Results

	
simple_search(query)

	Search ChemSpider with arbitrary query.

A maximum of 100 results are returned. Security token is required.

	Parameters

	query (string) – Search query - a name, SMILES, InChI, InChIKey, CSID, etc.

	Returns

	List of Compounds.

	Return type

	list[Compound]

	
get_record_mol(csid, calc3d=False)

	Get ChemSpider record in MOL format. Security token is required.

	Parameters

	
	csid (string|int) – ChemSpider ID.

	calc3d (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether 3D coordinates should be calculated before returning record data.

	
get_original_mol(csid)

	Get original submitted MOL file. Security token is required.

	Parameters

	csid (string|int) – ChemSpider ID.

	
get_compound_thumbnail(csid)

	Get PNG image as binary data.

	Parameters

	csid (string|int) – ChemSpider ID.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
get_databases()

	Get the list of datasources in ChemSpider.

	
get_compound_info(csid)

	Get SMILES, StdInChI and StdInChIKey for a given CSID. Security token is required.

	Parameters

	csid (string|int) – ChemSpider ID.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_extended_compound_info(csid)

	Get extended record details for a CSID. Security token is required.

	Parameters

	csid (string|int) – ChemSpider ID.

	
get_extended_compound_info_list(csids)

	Get extended record details for a list of CSIDs. Security token is required.

	Parameters

	csids (list [https://docs.python.org/3/library/stdtypes.html#list][string|int]) – ChemSpider IDs.

	
get_extended_mol_compound_info_list(csids, mol_type=MOL2D, include_reference_counts=False, include_external_references=False)

	Get extended record details (including MOL) for a list of CSIDs.

A maximum of 250 CSIDs can be fetched per request. Security token is required.

	Parameters

	
	csids (list [https://docs.python.org/3/library/stdtypes.html#list][string|int]) – ChemSpider IDs.

	mol_type (string) – MOL2D, MOL3D or
BOTH.

	include_reference_counts (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include reference counts.

	include_external_references (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include external references.

	
get_compound_spectra_info(csid)

	Get information about all the spectra for a ChemSpider ID. Subscriber role security token is required.

	Parameters

	csid (string|int) – ChemSpider ID.

	Returns

	List of spectrum info.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
get_spectrum_info(spectrum_id)

	Get information for a specific spectrum ID. Subscriber role security token is required.

	Parameters

	spectrum_id (string|int) – spectrum ID.

	Returns

	Spectrum info.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_spectra_info_list(csids)

	Get information about all the spectra for a list of ChemSpider IDs.

	Parameters

	csids (list [https://docs.python.org/3/library/stdtypes.html#list][string|int]) – ChemSpider IDs.

	Returns

	List of spectrum info.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
get_all_spectra_info()

	Get full list of all spectra in ChemSpider. Subscriber role security token is required.

rtype: list[dict]

	
request(api, endpoint, **params)

	Construct API request and return the XML response.

	Parameters

	
	api (string) – The specific ChemSpider API to call (MassSpec, Search, Spectra, InChI).

	endpoint (string) – ChemSpider API endpoint.

	params – (Optional) Parameters for the ChemSpider endpoint as keyword arguments.

	Return type

	xml tree

	
construct_api_url(api, endpoint, **params)

	Construct a Chemspider API url, encoded, with parameters as a GET querystring.

	Parameters

	
	api (string) – The specific ChemSpider API to call (MassSpecAPI, Search, Spectra, InChI).

	endpoint (string) – ChemSpider API endpoint.

	params – (Optional) Parameters for the ChemSpider endpoint as keyword arguments.

	Return type

	string

	
async_simple_search(query)

	Search ChemSpider with arbitrary query, returning results in order of the best match found.

This method returns a transaction ID which can be used with other methods to get search status and results.

Security token is required.

	Parameters

	query (string) – Search query - a name, SMILES, InChI, InChIKey, CSID, etc.

	Returns

	Transaction ID.

	Return type

	string

	
async_simple_search_ordered(query, order=CSID, direction=ASCENDING)

	Search ChemSpider with arbitrary query, returning results with a custom order.

This method returns a transaction ID which can be used with other methods to get search status and results.

Security token is required.

	Parameters

	
	query (string) – Search query - a name, SMILES, InChI, InChIKey, CSID, etc.

	order (string) – CSID, MASS_DEFECT,
MOLECULAR_WEIGHT, REFERENCE_COUNT,
DATASOURCE_COUNT, PUBMED_COUNT or
RSC_COUNT.

	direction (string) – ASCENDING or DESCENDING.

	Returns

	Transaction ID.

	Return type

	string

	
get_async_search_status(rid)

	Check the status of an asynchronous search operation.

Security token is required.

	Parameters

	rid (string) – A transaction ID, returned by an asynchronous search method.

	Returns

	Unknown, Created, Scheduled, Processing, Suspended, PartialResultReady, ResultReady, Failed,
TooManyRecords

	Return type

	string

	
get_async_search_status_and_count(rid)

	Check the status of an asynchronous search operation. If ready, a count and message are also returned.

Security token is required.

	Parameters

	rid (string) – A transaction ID, returned by an asynchronous search method.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_async_search_result(rid)

	Get the results from a asynchronous search operation. Security token is required.

	Parameters

	rid (string) – A transaction ID, returned by an asynchronous search method.

	Returns

	A list of Compounds.

	Return type

	list[Compound]

	
get_async_search_result_part(rid, start=0, count=-1)

	Get a slice of the results from a asynchronous search operation. Security token is required.

	Parameters

	
	rid (string) – A transaction ID, returned by an asynchronous search method.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The number of results to skip.

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of results to return. -1 returns all through to end.

	Returns

	A list of Compounds.

	Return type

	list[Compound]

	
simple_search_by_formula(formula)

	Search ChemSpider by molecular formula.

	Parameters

	formula (string) – Molecular formula

	Returns

	A list of Compounds.

	Return type

	list[Compound]

	
simple_search_by_mass(mass, mass_range)

	Search ChemSpider by mass +/- range.

	Parameters

	
	mass (float [https://docs.python.org/3/library/functions.html#float]) – The mass to search for.

	mass_range (float [https://docs.python.org/3/library/functions.html#float]) – The +/- mass range to allow.

	Returns

	A list of Compounds.

	Return type

	list[Compound]

	
chemspipy.api.MOL2D = u'2d'

	2D coordinate dimensions

	
chemspipy.api.MOL3D = u'3d'

	3D coordinate dimensions

	
chemspipy.api.BOTH = u'both'

	Both coordinate dimensions

	
chemspipy.api.ASCENDING = u'ascending'

	Ascending sort direction

	
chemspipy.api.DESCENDING = u'descending'

	Descending sort direction

	
chemspipy.api.CSID = u'csid'

	CSID sort order

	
chemspipy.api.MASS_DEFECT = u'mass_defect'

	Mass defect sort order

	
chemspipy.api.MOLECULAR_WEIGHT = u'molecular_weight'

	Molecular weight sort order

	
chemspipy.api.REFERENCE_COUNT = u'reference_count'

	Reference count sort order

	
chemspipy.api.DATASOURCE_COUNT = u'datasource_count'

	Datasource count sort order

	
chemspipy.api.PUBMED_COUNT = u'pubmed_count'

	Pubmed count sort order

	
chemspipy.api.RSC_COUNT = u'rsc_count'

	RSC count sort order

chemspipy.objects

Objects returned by ChemSpiPy API methods.

	
class chemspipy.Compound

	A class for retrieving and caching details about a specific ChemSpider record.

The purpose of this class is to provide access to various parts of the ChemSpider API that return information about
a compound given its ChemSpider ID. Information is loaded lazily when requested, and cached for future access.

	Parameters

	
	cs (ChemSpider) – ChemSpider session.

	csid (int|string) – ChemSpider ID.

	
csid

	ChemSpider ID.

	
image_url

	Return the URL of a PNG image of the 2D chemical structure.

	
molecular_formula

	Return the molecular formula for this Compound.

	Return type

	string

	
smiles

	Return the SMILES for this Compound.

	Return type

	string

	
stdinchi

	Return the Standard InChI for this Compound.

	Return type

	string

	
stdinchikey

	Return the Standard InChIKey for this Compound.

	Return type

	string

	
inchi

	Return the InChI for this Compound.

	Return type

	string

	
inchikey

	Return the InChIKey for this Compound.

	Return type

	string

	
average_mass

	Return the average mass of this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
molecular_weight

	Return the molecular weight of this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
monoisotopic_mass

	Return the monoisotopic mass of this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
nominal_mass

	Return the nominal mass of this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
alogp

	Return the calculated AlogP for this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
xlogp

	Return the calculated XlogP for this Compound.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
common_name

	Return the common name for this Compound.

	Return type

	string

	
mol_2d

	Return the MOL file for this Compound with 2D coordinates.

	Return type

	string

	
mol_3d

	Return the MOL file for this Compound with 3D coordinates.

	Return type

	string

	
mol_raw

	Return unprocessed MOL file for this Compound.

	Return type

	string

	
image

	Return a 2D depiction of this Compound.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
spectra

	Return all the available spectral data for this Compound.

	Return type

	list[Spectrum]

	
class chemspipy.Spectrum

	A class for retrieving and caching details about a Spectrum.

Initializing a Spectrum from a spectrum ID requires a subscriber role security token.

	Parameters

	
	cs (ChemSpider) – ChemSpider session.

	spectrum_id (int|string) – Spectrum ID.

	
classmethod from_info_dict(cs, info)

	Initialize a Spectrum from an info dict that has already been retrieved.

	
spectrum_id

	Spectrum ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
csid

	ChemSpider ID of related compound.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
spectrum_type

	Spectrum type.

Possible values include HNMR, CNMR, IR, UV-Vis, NIR, EI, 2D1H1HCOSY, 2D1H13CD, APCI+, R, MALDI+, 2D1H13CLR,
APPI-, CI+ve, ESI+, 2D1H1HOESY, FNMR, CI-ve, ESI-, PNMR.

	Return type

	string

	
file_name

	Spectrum file name.

	Return type

	string

	
comments

	Spectrum comments. Can be None.

	Return type

	string

	
url

	Spectrum URL.

	Return type

	string

	
data

	Spectrum data file contents. Requires an additional request. Result is cached.

	Return type

	string

	
original_url

	Original spectrum URL. Can be None.

	Return type

	string

	
submitted_date

	Spectrum submitted date.

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

chemspipy.search

A wrapper for asynchronous search requests.

	
class chemspipy.Results

	Container class to perform a search on a background thread and hold the results when ready.

Generally shouldn’t be instantiated directly. See search() instead.

	Parameters

	
	cs (ChemSpider) – ChemSpider session.

	searchfunc (function) – Search function that returns a transaction ID.

	searchargs (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Arguments for the search function.

	raise_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, raise exceptions. If False, store on exception property.

	max_requests (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of times to check if search results are ready.

	
ready()

	Return True if the search finished.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
success()

	Return True if the search finished with no errors.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
wait()

	Block until the search has completed and optionally raise any resulting exception.

	
status

	Current status string returned by ChemSpider.

	Returns

	‘Unknown’, ‘Created’, ‘Scheduled’, ‘Processing’, ‘Suspended’, ‘PartialResultReady’, ‘ResultReady’

	Return type

	string

	
exception

	Any Exception raised during the search. Blocks until the search is finished.

	
message

	A contextual message about the search. Blocks until the search is finished.

	Return type

	string

	
count

	The number of search results. Blocks until the search is finished.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
duration

	The time taken to perform the search. Blocks until the search is finished.

	Return type

	datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

chemspipy.errors

Exceptions raised by ChemSpiPy.

	
exception chemspipy.errors.ChemSpiPyError

	Root ChemSpiPy Exception.

	
exception chemspipy.errors.ChemSpiPyParseError

	Raised when ChemSpiPy fails to parse a response from the ChemSpider servers.

	
exception chemspipy.errors.ChemSpiPyAuthError

	Raised when the security token doesn’t have access to an endpoint.

	
exception chemspipy.errors.ChemSpiPyNotFoundError

	Raised when no record is present for the requested CSID.

	
exception chemspipy.errors.ChemSpiPyTimeoutError

	Raised when an asynchronous request times out.

	
exception chemspipy.errors.ChemSpiPyServerError

	Raised when ChemSpider returns a 500 status code with an error message.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chemspipy	

 	
 	
 chemspipy.api	

 	
 	
 chemspipy.errors	

 	
 	
 chemspipy.objects	

 	
 	
 chemspipy.search	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W
 | X

A

 	
 	alogp (chemspipy.Compound attribute)

 	ASCENDING (in module chemspipy.api)

 	
 	async_simple_search() (chemspipy.ChemSpider method)

 	async_simple_search_ordered() (chemspipy.ChemSpider method)

 	average_mass (chemspipy.Compound attribute)

B

 	
 	BOTH (in module chemspipy.api)

C

 	
 	ChemSpider (class in chemspipy)

 	chemspipy (module)

 	chemspipy.api (module)

 	chemspipy.errors (module)

 	chemspipy.objects (module)

 	chemspipy.search (module)

 	ChemSpiPyAuthError

 	ChemSpiPyError

 	ChemSpiPyNotFoundError

 	ChemSpiPyParseError

 	
 	ChemSpiPyServerError

 	ChemSpiPyTimeoutError

 	comments (chemspipy.Spectrum attribute)

 	common_name (chemspipy.Compound attribute)

 	Compound (class in chemspipy)

 	construct_api_url() (chemspipy.ChemSpider method)

 	count (chemspipy.Results attribute)

 	csid (chemspipy.Compound attribute)

 	(chemspipy.Spectrum attribute)

 	CSID (in module chemspipy.api)

D

 	
 	data (chemspipy.Spectrum attribute)

 	DATASOURCE_COUNT (in module chemspipy.api)

 	
 	DESCENDING (in module chemspipy.api)

 	duration (chemspipy.Results attribute)

E

 	
 	exception (chemspipy.Results attribute)

F

 	
 	file_name (chemspipy.Spectrum attribute)

 	
 	from_info_dict() (chemspipy.Spectrum class method)

G

 	
 	get_all_spectra() (chemspipy.ChemSpider method)

 	get_all_spectra_info() (chemspipy.ChemSpider method)

 	get_async_search_result() (chemspipy.ChemSpider method)

 	get_async_search_result_part() (chemspipy.ChemSpider method)

 	get_async_search_status() (chemspipy.ChemSpider method)

 	get_async_search_status_and_count() (chemspipy.ChemSpider method)

 	get_compound() (chemspipy.ChemSpider method)

 	get_compound_info() (chemspipy.ChemSpider method)

 	get_compound_spectra() (chemspipy.ChemSpider method)

 	get_compound_spectra_info() (chemspipy.ChemSpider method)

 	get_compound_thumbnail() (chemspipy.ChemSpider method)

 	
 	get_compounds() (chemspipy.ChemSpider method)

 	get_databases() (chemspipy.ChemSpider method)

 	get_extended_compound_info() (chemspipy.ChemSpider method)

 	get_extended_compound_info_list() (chemspipy.ChemSpider method)

 	get_extended_mol_compound_info_list() (chemspipy.ChemSpider method)

 	get_original_mol() (chemspipy.ChemSpider method)

 	get_record_mol() (chemspipy.ChemSpider method)

 	get_spectra() (chemspipy.ChemSpider method)

 	get_spectra_info_list() (chemspipy.ChemSpider method)

 	get_spectrum() (chemspipy.ChemSpider method)

 	get_spectrum_info() (chemspipy.ChemSpider method)

I

 	
 	image (chemspipy.Compound attribute)

 	image_url (chemspipy.Compound attribute)

 	
 	inchi (chemspipy.Compound attribute)

 	inchikey (chemspipy.Compound attribute)

M

 	
 	MASS_DEFECT (in module chemspipy.api)

 	message (chemspipy.Results attribute)

 	MOL2D (in module chemspipy.api)

 	MOL3D (in module chemspipy.api)

 	mol_2d (chemspipy.Compound attribute)

 	
 	mol_3d (chemspipy.Compound attribute)

 	mol_raw (chemspipy.Compound attribute)

 	molecular_formula (chemspipy.Compound attribute)

 	molecular_weight (chemspipy.Compound attribute)

 	MOLECULAR_WEIGHT (in module chemspipy.api)

 	monoisotopic_mass (chemspipy.Compound attribute)

N

 	
 	nominal_mass (chemspipy.Compound attribute)

O

 	
 	original_url (chemspipy.Spectrum attribute)

P

 	
 	PUBMED_COUNT (in module chemspipy.api)

R

 	
 	ready() (chemspipy.Results method)

 	REFERENCE_COUNT (in module chemspipy.api)

 	
 	request() (chemspipy.ChemSpider method)

 	Results (class in chemspipy)

 	RSC_COUNT (in module chemspipy.api)

S

 	
 	search() (chemspipy.ChemSpider method)

 	simple_search() (chemspipy.ChemSpider method)

 	simple_search_by_formula() (chemspipy.ChemSpider method)

 	simple_search_by_mass() (chemspipy.ChemSpider method)

 	smiles (chemspipy.Compound attribute)

 	spectra (chemspipy.Compound attribute)

 	Spectrum (class in chemspipy)

 	
 	spectrum_id (chemspipy.Spectrum attribute)

 	spectrum_type (chemspipy.Spectrum attribute)

 	status (chemspipy.Results attribute)

 	stdinchi (chemspipy.Compound attribute)

 	stdinchikey (chemspipy.Compound attribute)

 	submitted_date (chemspipy.Spectrum attribute)

 	success() (chemspipy.Results method)

U

 	
 	url (chemspipy.Spectrum attribute)

W

 	
 	wait() (chemspipy.Results method)

X

 	
 	xlogp (chemspipy.Compound attribute)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 ChemSpiPy

 		
 Introduction

 		
 Obtaining a security token

 		
 ChemSpiPy license

 		
 Installation

 		
 Option 1: Use pip (recommended)

 		
 Option 2: Download the latest release

 		
 Option 3: Clone the repository

 		
 Getting started

 		
 Before we start

 		
 First steps

 		
 Retrieve a Compound

 		
 Search for a name

 		
 Compound

 		
 Creating a Compound

 		
 Searching for Compounds

 		
 Compound properties

 		
 Implementation details

 		
 Searching

 		
 Compound search

 		
 Asynchronous searching

 		
 Simple search

 		
 Search by formula

 		
 Search by mass

 		
 Spectra

 		
 Retrieving spectra

 		
 Spectrum metadata

 		
 Spectrum data

 		
 Miscellaneous

 		
 Constructing API URLs

 		
 Data sources

 		
 Advanced

 		
 Keep your security token secret

 		
 Specify a User Agent

 		
 Logging

 		
 Contributing

 		
 Feedback

 		
 Contributing

 		
 Quick guide to contributing

 		
 Tips

 		
 API documentation

 		
 chemspipy.api

 		
 chemspipy.objects

 		
 chemspipy.search

 		
 chemspipy.errors

_static/ajax-loader.gif

